
동적데이터기반
SW 유닛들사이의
관련도메트릭활용

KAIST SWTV 연구실

김문주

1

Research Roadmap on Automated Testing and Debugging

Current: Auto.
Testing and Fault
Localization (FL)

Concolic
Testing

Distributed
Concolic
Testing

Hybrid
Algorithm
(e.g., w/

Genetic Alg)
FSE’11a
SBMF’09

FSE’11b
ICTAC’10

ISSRE ’11
ICST'14

Extended
Concolic

Application
ASE’13, ICSE'15
ICSE’18, ICST’18
FSE’19

Flash Mem
Model

Checking

Flash Mem
SW Model
Checking

Runtime
Verification

FMSD’04 Spin’08,
FACJ'12

ASE ‘08
TSE’11

Process
Algebra

Early Ph.D

Robot SW
Verification

using Esterel

ICSE’05
ICRA'05

Past: Runtime
Verification and
Model Checking

Mutation-
based Fault
Localization

ICST’14, ASE‘15,
IST’17, TOSEM 19

Better
Industrial
Application

Future: Data driven
scalable SW analysis
framework

Static Analysis SMT Solver ML Engine

Concolic Testing Cov-guided Fuzzing

SBFL Mutation-based FL Bug Prediction

철학적이야기. SW의본질이란?

• SW analysis (static analysis, dynamic analysis, etc.) is to
understand the “essence” of SW

• However, it is very difficult to define the essense of SW
• Ex1. SW medium itself (e.g., CD/USB)
• Ex2. Information in the SW medium (e.g., a sequence of bytes)
• Ex3. Execution information of SW (e.g., execution traces, etc.)

• In process algebra community, the essence of an agent is
indirectly defined by “equivalence” (or preorder) between
agents.

3

4

Equivalnce
Hierarchy

Correlation can be Used to Identify
Essense of Software

• Correlation between SW components (e.g., functions, classes,
modules, etc.) can be obtained more easily than causal-effect
relation between the SW components

• Correlation/grouping of SW components have been studied in
SE for the following applications:

• ex1. How to plan software releases

• ex2. How to build SW developing team structure

• ex3. How to organize SW segments for various purposes

5

Static Relevance between Functions (1/2)

• Until very recently, only static correlation between the SW
components have been utilized

• since researchers preferred stable (and easy to analyze) targets

• For example,

• Li and Henry [43] proposed a message passing coupling metric which measures the
number of method invocations in a class.

• Chidamber and Kemerer [13] proposed a coupling metric of two classes using the
number of accesses of field variables and invocations of the methods of another
class.

• Lee et al. [42] uses the number of method invocations of another class weighted by
the number of arguments of the invoked methods.

6

Static Relevance between Functions (2/2)

• However, these metrics have limitations to apply to reduce
false alarms in automated unit testing (i.e., these metrics are
static ones and reports provide too imprecise coupling value)

• Ex1. The metric using the number of accesses to the common class
field variables [13] does not capture the relation constructed by
passing arguments.

• Ex2. Lee et al. [42] considered the number of arguments passed but
the number of arguments is often not a good weight because one
pointer argument can pass large data structure.

7

• Concurrent programs have very high complexity

due to non-deterministic scheduling

• Ex. int x=0, y=0, z =0;

void Thread1() {x=y+1; y=z+1; z= x+1;}

Void Thread2() {y=z+1; z=x+1; x=y+1;}

• Total 20 interleaving scenarios

= (3+3)!/(3!x3!)

• However, only 11 unique outcomes

• assert(x+y+z > 5)???

• assert(x+y+z < 15)???

Thread1()

Thread2()
x=y+1 y=z+1 z=x+1

x=y+1

y=z+1

z=x+1

Trail1: 2,1,2
Trail2: 2,1,3
Trail3: 2,2,3
Trail4: 2,3,3
Trail5: 2,4,3
Trail6: 3,2,3

Trail7: 3,2,4
Trail8: 4,3,2
Trail9: 4,3,5
Trail10: 5,4,3
Trail11: 5,4,6

8

SW 테스팅 = SW 본질을찾아가는과정

int x=0, y=0, z =0;

void Thread1()

{x=y+1; y=z+1; z= x+1;}

void Thread2()

{y=z+1; z=x+1; x=y+1;}

Thread1()

Thread2()
x=y+1 y=z+1 z=x+1

x=y+1

y=z+1

z=x+1

9/11

Static SW Code vs. Dynamic SW Executions

New Applications of Function Relevance

10/11

• Defining Extended Units
for Unit Testing

› False Alarm Filtering by Using
Closely Relevant Contexts

Green: Target function f
Light green: Functions highly relevant to the
target
Grey: Functions not relevant to the target
Green + light green: Extended Unit of f

Yellow & sky blue: a calling context of a target
func. f

f g

hx y

z

Unit Testing f without or with Contexts of f

Without Contexts of f
Pros: fast exploration of target

unit execution paths
Cons: infeasible target unit

executions

With Contexts of f
Pros: reduced infeasible target

unit executions
Cons: slow exploration of target unit

execution due to large cost of
exploring context functions

Computing Function Relevance based-on System TCs

𝑃𝑃 𝑔𝑔 𝑓𝑓 =
|𝑓𝑓 calls 𝑔𝑔|

|𝑓𝑓|

=
|TC2, TC3|

|TC1, TC2, TC3|
= 0.66

TC1 TC2 TC3

main

b

f

a2

main

g

f

a1

main

b

g

f

a1

h

Relevance of f
on other functions
(Threshold τ =0.6)

P(b|f) = 0.66
P(g|f) = 0.66
P(h|f) = 0.33

…

Function call profile

Recent New Application of
Func. Relevance for Fuzzing

13/11

A. Lee, I. Ariq, Y. Kim, and M. Kim, POWER:
Program Option-Aware Fuzzer for High Bug
Detection Ability, ICST, 2022

How to Select Command-line Option Configurations

14/11

f1

f2 main f4

f3

Func. Relevance
f1 f2 High
f1 f3 Low
f1 f4 Low
f1 main High
f2 f3 Low
f2 f4 Low
f2 main High
f3 main Low
f3 f4 High
f4 main High
...

option
conf. 𝑜𝑜1

option
conf. 𝑜𝑜2

option conf. 𝑜𝑜3

(a) (b)

Problem:
- There exist too many
different command-line
option configurations for a
target program.

- We need to select far
different option
configurations only

• POWER found 2.15 (= 88/41) times more
crashes than POWERRnd

• For example, on tiffinfo, POWER found
four times more crashes and covered
18.1% (=(3228.1-2732.4)/2732.4) more
branches than POWERRnd.

Improved Crash Bug
Detection Ability by
Selecting Option
Configurations

On-going Work to Improve Dynamic Func. Relevance
Metric (co-work w/ 김윤호교수님)

16/11

• Before:
• 타겟함수 f와 f와의관련도를측정할다른함수 g에대해서, 얼마나많은테스트입력
값이두함수 f,g를같이실행하는가를측정

• After:
• 각테스트에서생성된호출시퀀스 (Call sequence)를 f를기준으로여러개의조각

(segments) 으로분할하여, 얼마나많은 f,g가같은조각에포함되는지를측정.
• 단순히실행되었는가에서더나아가호출시퀀스를비교하기때문에, 더정교하게두
함수사이의관련도측정이가능

실험결과
#bugs #false alarms F/T ratio

#target bugs CONBRIO Seg. Metric CONBRIO Seg. Metric CONBRIO Seg. Metric

Bash 6 5 4 18 17 3.6 4.3
Flex 2 1 1 6 5 6.0 5.0
Grep 5 4 4 13 14 3.3 3.5
Gzip 2 2 2 5 4 2.5 2.0
Make 3 3 3 9 10 3.0 3.3
Sed 2 2 2 5 7 2.5 3.5
Vim 6 5 5 25 25 5.0 5.0
Perl 6 6 6 57 24 9.5 4.0
Bzip2 2 2 2 10 8 5.0 4.0
Gcc 15 14 13 79 78 5.6 6.0
Gobmk 5 5 5 39 34 7.8 6.8
Hmmer 3 3 3 12 12 4.0 4.0
Sjeng 2 2 2 8 8 4.0 4.0

libquantum 3 3 3 5 3 1.7 1.0

h264ref 5 4 5 17 16 4.3 3.2
Sum 67 61 60
Avg 20.5 17.7 4.5 4.0

Questions? Comments?

18

	동적 데이터 기반 �SW 유닛들 사이의 �관련도 메트릭 활용
	Research Roadmap on Automated Testing and Debugging
	철학적 이야기. SW의 본질이란?
	Equivalnce Hierarchy
	Correlation can be Used to Identify Essense of Software
	Static Relevance between Functions (1/2)
	Static Relevance between Functions (2/2)
	슬라이드 번호 8
	슬라이드 번호 9
	New Applications of Function Relevance
	Unit Testing f without or with Contexts of f
	Computing Function Relevance based-on System TCs
	Recent New Application of Func. Relevance for Fuzzing
	How to Select Command-line Option Configurations
	Improved Crash Bug Detection Ability by �Selecting Option Configurations
	On-going Work to Improve Dynamic Func. Relevance Metric (co-work w/ 김윤호 교수님)
	실험결과
	Questions? Comments?
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	Correlation wins over Causal-Result	
	슬라이드 번호 25

