KAIST SWTV 9114

213X
O T

KAIST

&\ \—|-—:;_.\ RN (O \ /7, = rafd P T P e -
SW Testing & Verlirication Group
[Home || Members || Research || Projects || Publications || Courses |[Lab Seminar |[Pictures |[Link |

You are here: Home

Welcome to Software Testing and Verification Group

Brakes

Wheel Alilgnment

Steering System

Lighting System ——— " Interior Systems Allgnment

Research Roadmap on Automated Testing and Debugging

+ Past: Runtime
Verification and
Model Checking

4+ Current: Auto.
Testing and Fault
Localization (FL)

+ Future: Data driven
scalable SW analysis
framework

Process

Algebra

Early Ph.D

Concolic

Testing

unime |0 | Mo 8 Swodel
Ver|f|cat|0n using Esterel Checking Checklng
FMSD’04 ICSE’05 Spin’08, ASE ‘08
ICRA'05 FACJ'12 TSE'11

Hybrid

Distributed Extended
Concolic

Testing

Algorithm MUIEISIeN-

(e.g., w/
Genetic Alg)

based Fault
Localization

Concolic
Application

FSE'11a
SBMF’09

ICST’14, ASE‘15,
IST’17, TOSEM 19

FSE'11b
ICTAC’10

ISSRE "11 ASE’13, ICSE'15
ICST'14 ICSE’18, ICST’18

FSE’19

SBFL ' Mutation-based FL = Bug Prediction
Concolic Testing | Cov-guided Fuzzing

Static Analysis SMT Solver | ML Engine

NS

Better
Industrial
Application

=t 0|0FY], Swe| == 0|zt?

« SW analysis (static analysis, dynamic analysis, etc.) is to
understand the “essence” of SW

* However, it is very difficult to define the essense of SW
* Ex1. SW medium itself (e.g., CD/USB)
« Ex2. Information in the SW medium (e.qg., a sequence of bytes)
« Ex3. Execution information of SW (e.q., execution traces, etc.)

* In process algebra community, the essence of an agent is
indirectly defined by “equivalence” (or preorder) between
agents.

-IIIIIII'IIIIIIII‘

Equivalnce :_‘f“j’f‘_“f“_“_"i‘jf:“fft_"j*_;
: ‘.
H lerarc hy [p-nested simulation semantic P#8f

P=s9
ready stmulation semantics

coin coin coin

cola juice cola Juice

h)ﬂssfblf—fﬂfuf'ﬂs SET,larlticq-II

lpossible worlds semanticy

Iready trace semanticy

cusssnsnnnden. [g_i‘i_y'e trace semanticy freadiness semanticd E ¥ ® 5

" lsimulation semantics E \ / E coin coin coin

E EEEEEEEER EEEEER Vﬂi{l‘mﬁ SETrluﬂticd : .

- cola cola

EH EEEEEEEESR EEEEEEEEENR : ‘
= |completed trace semanticq ® .
" ! :Fp=rq ¥ p#crd :
: v : = 4 T(p) = {coin.cola, coin} + CT(p) = {coin.cola} :
a race semanticy : = < T(q) = {coin.cola, coin} + CT(q) = {cain.cola, coin} :
:....................: : 4 -

Correlation can be Used to ldentify
Essense of Software

« Correlation between SW components (e.g., functions, classes,
modules, etc.) can be obtained more easily than causal-effect
relation between the SW components

* Correlation/grouping of SW components have been studied in
SE for the following applications:
» ex1. How to plan software releases
* ex2. How to build SW developing team structure
» ex3. How to organize SW segments for various purposes

Static Relevance between Functions (1/2)

 Until very recently, only static correlation between the SW
components have been utilized
* since researchers preferred stable (and easy to analyze) targets

* For example,

 Liand Henry [43] proposed a message passing coupling metric which measures the
number of method invocations in a class.

« Chidamber and Kemerer [13] proposed a coupling metric of two classes using the
number of accesses of field variables and invocations of the methods of another
class.

» Lee et al. [42] uses the number of method invocations of another class weighted by
the number of arguments of the invoked methods.

Static Relevance between Functions (2/2)

* However, these metrics have limitations to apply to reduce
false alarms in automated unit testing (i.e., these metrics are
static ones and reports provide too imprecise coupling value)

* Ex1. The metric using the number of accesses to the common class
field variables [13] does not capture the relation constructed by
passing arguments.

* Ex2. Lee et al. [42] considered the number of arguments passed but
the number of arguments is often not a good weight because one
pointer argument can pass large data structure.

SW HIAR = SW 22S 207 t= 2t

» Concurrent programs have very high complexity

Thread1()
x=y+1 y=z+1 z=x+1

due to non-deterministic scheduling

Thread2()
y=z+1

* Ex. int x=0, y=0, z =0;
void Thread1() {x=y+1; y=z+1; z= x+1;}
Void Thread2() {y=z+1; z=x+1; x=y+1;} Z=x+1

* Total 20 interleaving scenarios x=y+1 . -
= (3+3)!/(3!x3!) el
o ' Trail1: 2,1,2 Trail7: 3,2,4
However, only 11 unique outcomes a2 213 Trals 432
. 299 Trail3: 2,2,3 Trail9: 4,3,5
assert(x+y+z > 5)??7 Trail4: 2,33 Trail10: 5,4,3

Trail5: 2,4,3 Trail11: 5,4,6

e assert(x+y+z < 15)?7?7? Trail6: 3.2.3

Static SW Code vs. Dynamic SW Executions

Thread1()
x=y+1 vy=z+1 z=x+1
Thread2() Y y=z+1
int x=0, y=0, z =0; y=z+1
void Thread1()
{x=y+1; y=z+1; z= x+1.} 7=x+1
void Thread?2()
= ']’ = ']’ = 1:
{y=z+1; z=x+1; x=y+1;} x=y+1
9/11

New Applications of Function Relevance

* Defining Extended Units
for Unit Testing

Green: Target function £
: Functions highly relevant to the
target
. Functions not relevant to the target

Green + - Extended Unit of 7

» False Alarm Filtering by Using
Closely Relevant Contexts

D) /G

K Tk

NIk A

10/11

Unit Testing /without or with of 7

Without Contexts of 7 With Contexts of /
Pros: fast exploration of target Pros: reduced infeasible target
unit execution paths unit executions

Cons: slow exploration of target unit
execution due to large cost of
exploring context functions

Cons: infeasible target unit
executions

Computing Function Relevance based-on System TCs

Phasel:

Defining extended units
and calling contexts

Function call profile

TC1 TC2 TC3
mailn main main
\ 4 \ 4
az al
V v
@ ®
¥

Sys. TCs

Sys. TC profile
analysis

f calls g|

P(If) =

=)

/]

ITC2, TC3|

~ |TC1,TC2, TC3|

ECp”..l@ %@o =X

A program P

0.66

Calling context

EH =
e i

Extended unit
Relevance of £

on other functions
(Threshold t =0.6)

f)=0.66 \

Recent New Application of
Func. Relevance for Fuzzing

A. Lee, I. Arig, Y. Kim, and M. Kim, POWER:
Program Option-Aware Fuzzer for High Bug
Detection Ability, ICST, 2022

| Option Configuration I

: Main Fuzzing Stage
Selection Stage

Exploratory Stage
Tinit
|I |I
Initial | Initial Test
option | input input
o | fe corpus
Select a
test input
Doc. for P
Pgm .
Help || Man Opt. Ly |option| , |Dic.-based
msg. || page | | W i [opt. conf.
for P || for P for P mutation
tf
Of
Target feedback
Program Coverage
P evaluation

\

| .

F exp

Test
input
corpus

: I : : |
Option| Input
conf. | file

\ 4

Function Call

Select a

Profile extraction test input
0; »main, £1, £2, £3, . Option| Input
t conf. file
(o]} »fl, £2, gl, g3, .. o f
lllll+llllll ‘
Opt. Conf. Relevance Calc.
Function Input file Path
Relevance mutation Coverage
P evaluation
0) [t == =p 3
’ Option| Input
t''| conf. | file
Selected o f! f
C m eedback
Bt Osel m
1 LV IS J
[}
[|

Problem:
- There exist too many
different command-line

option configurations for a

target program.

- We need to select far
different option
configurations only

conf option
. 0
/,,‘1 conf. o,
oo\ -~
K f1 I‘ H f:;\\
;1 @,] \
[\ I \
iR K ik
o\ tmain | ® /)
\\:\- \\ ‘l 20
Ny a ---_H-"/

--_—-————__—

option conf. o4

(a)

How to Select Command-line Option Configurations

Func. Relevance

f1 f2 High
f1 f3 Low
f1 f4 Low
f1 main High
f2 f3 Low
f2 f4 Low
f2 main High
f3 main Low
f3 f4 High
f4 main High

(b)

Improved Crash Bug
Detection Ability by
Selecting Option
Configurations

 POWER found 2.15 (= 88/41) times more
crashes than POWER:

* For example, on tiffinfo, POWER found
four times more crashes and covered
18.1% (=(3228.1-2732.4)/2732.4) more
branches than POWER&..

THE TOTAL NUMBER OF CRASHES DETECTED AND THE AVERAGE
NUMBERS OF BRANCHES COVERED BY THE VARIANTS OF POWER

Targets || POWERFd POWERKMO | POWER
#uniq. #branch | #uniq. #branch | #uniq. #branch
crash covered crash covered crash covered
aveconv 4 11709.6 7 171977 5 15006.2
bison I 5728.0 3 6637.6 5 6138.0
cflow 3 1553.2 4 1689.1 2 1675.3
cjpeg 0 3920.1 0 4192.8 0 4086.7
djpeg 0 2598.1 0 2651.7 0 2513.7
dwarfdump I 6565.5 4 7563.7 2 7240.6
exiv2 0 8679.3 0 9636.8 1 9567.0
ffmpeg I 36252.6 I 481228 2 453928
am 0 6492.3 0 9454.0 1 9710.1
gs 0 22586.2 I 24905.8 0 24161.6
jasper 0 3674.4 0 3660.1 0 4101.0
mpg123 0 3744.1 | 4006.3 1 3809.3
mutool 0 124238 0 15746.1 0 136477
nasm 4 6403.2 3 6578.8 4 6506.6
objdump 13 262379 8 24639.1 13 33070.5
pdftohtml 0 7184.0 0 8100.5 4 7600.7
pdftopng 0 7341.9 0 8947.8 9 8687.5
pdftops 0 8177.3 0 9719.0 9 9354.9
pngfix 0 1107.8 0 1191.2 0 11431
pspp 9 3389.2 7 4462.3 8 5650.0
readelf 0 9402.0 1 8799.3 8§ 10321.6
size I 5078.7 4 7621.5 3 9054.8
tff2pdf 0 4126.1 0 4226.8 0 4177.1
tiff2ps I 2950.8 I 3274.1 0 3379.0
tiffinfo I 27324 1 3060.9 4 3228.1
vim 0 398448 2 45466.5 5 456543
xmlcatalog 0 6598.8 0 6413.9 0 7598.9
xmllint 2 142457 2 14406.5 2 144205
xmlwf 0 3590.3 0 3733.0 0 3733.
yara 0 3455.6 0 3954.2 0 3118.9

-

B T T

Total

|88

On-going Work to Improve Dynamic Func. Relevance
Metric (co-work w/ &2 ul'gl)

* Before
« Ep2ll gh fof fofe| HE S SHY CHE = g0l CHoA, E0fLt B2 HIAE =
20| F &= fgE 20| 2HSI=IHE SE
e After:
« ZHHIAENM HEEl 25 AR A (Call sequence) & & 7|&2 = el 22
(segments) =2 F2 St0], GOt} B2 f,g7t 22 220 T&E[=XE 8.

ot
. Chad| ASE=DL0lM O LIop S5 A|BAE H|mSl?| H20), o Ymsh &
St Afo|2| BT EH0| s

Alod 24 _ll-
= 0O =1
#bugs #false alarms F/T ratio
#target bugs|CONBRIO [Seg. Metric |CONBRIO [Seg. MetriclCONBRIO [Seg. Metric

Bash 6 5 4 18 17 3.6 4.3
Flex 2 1 1 6 5 6.0 5.0
Grep 5 4 4 13 14 3.3 3.5
Gzip 2 2 2 5 4 2.5 2.0
Make 3 3 3 9 10 3.0 3.3
Sed 2 2 2 5 7 2.5 3.5
Vim 6 5 5 25 25 5.0 5.0
Perl 6 6 6 57 24 9.5 4.0
Bzip2 2 2 2 10 8 5.0 4.0
Gcc 15 14 13 79 78 5.6 6.0
Gobmk 5 5 5 39 34 7.8 6.8
Hmmer 3 3 3 12 12 4.0 4.0
Sjeng 2 2 2 8 8 4.0 4.0
libquantum 3 3 3 5 3 1.7 1.0
h264ref 5 4 5 17 16 4.3 3.2
Sum 67 61 60

Avg 20.5 17.7 4.5 4.0

Questions? Comments?

	동적 데이터 기반 �SW 유닛들 사이의 �관련도 메트릭 활용
	Research Roadmap on Automated Testing and Debugging
	철학적 이야기. SW의 본질이란?
	Equivalnce Hierarchy
	Correlation can be Used to Identify Essense of Software
	Static Relevance between Functions (1/2)
	Static Relevance between Functions (2/2)
	슬라이드 번호 8
	슬라이드 번호 9
	New Applications of Function Relevance
	Unit Testing f without or with Contexts of f
	Computing Function Relevance based-on System TCs
	Recent New Application of Func. Relevance for Fuzzing
	How to Select Command-line Option Configurations
	Improved Crash Bug Detection Ability by �Selecting Option Configurations
	On-going Work to Improve Dynamic Func. Relevance Metric (co-work w/ 김윤호 교수님)
	실험결과
	Questions? Comments?
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	Correlation wins over Causal-Result	
	슬라이드 번호 25

